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EFFECT OF THE CONDUCTANCE AND THICKNESS

OF A CONDUCTING PLATE ON THE SIGNAL

FROM A MATERIAL-VELOCITY INDUCTIVE TRANSDUCER

UDC 532.593 + 538.5.54 + 621.3.08Yu. N. Zhugin and Yu. L. Levakova

The perturbation problem of the magnetic field of a constant-current turn located above a
conducting plate set into motion by a plane shock wave with a rectangular profile is considered.
It is shown that not only the velocity of the plate but also its dynamic conductivity can be
determined on the basis of the electromotive force of induction recorded by means of the turn.
For the case where the conductance of the plate is known for both the conducting half-space and
for a plate whose thickness is comparable with the skin-layer thickness, approximate calculated
dependences for the velocity of the plate are obtained. A comparison with experimental data
and the clarification of the calculated dependences allows one to conclude that the approaches
proposed can be used for determining the conductance of metals in shock-wave processes.

Introduction. Zhugin and Krupnikov [1] proposed an inductive transducer for registration of short-
term processes occurring upon shock compression of condensed media. Based on it, the induction method
of continuous registration of the velocity of condensed media in shock-wave processes was developed in [2].
The principle of operation of the inductive transducer is based on the oscillographic registration of the
electromotive force (e.m.f.) of induction that arises in a constant-current coil (transducer) located above a
conducting plate after the plate has been set into motion by a shock wave. The diameter of the plate and its
conductance and thickness (0.2–0.3 mm for copper and aluminum) are quite large. Variation of the magnetic
flux through the transducer loop is due to nonstationary eddy currents occurring in the thickness-variable
surface of the metal plate (nonstationary skin effect). Zhugin and Krupnikov [2] showed experimentally
that in the time intervals of the laboratory experiment we are interested in, copper and aluminum plates
of sufficiently large thickness can be regarded as ideally conducting plates. At the same time, for lead and
bismuth, which possess much lower conductances, this assumption is incorrect; therefore, in obtaining the
corresponding calculated dependences, one should take into account the finiteness of their electric conduction.

In using plates whose thickness is smaller than the thickness of the nonstationary skin-layer, the effect
of magnetic-field diffusion through the moving plate is observed experimentally; this effect is manifested
in the decrease in the amplitude of the recorded signal. If the plate velocity is constant, the decrease is
the more considerable the thinner the plate and the lower its conductance. An appreciable decrease in the
signal amplitude is also observed in the case of the half-space whose conductance is much lower than that of
aluminum and copper.

The electromagnetic method of measuring the parameters of shock-compressed media, which is close to
the induction method in its physical principles, was considered by Fritz and Morgan [3]. In [3], a formula that
allows one to measure the material velocity and conductances of metal films of negligibly small thickness in a
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Fig. 1. Computational scheme.

layered dielectric–film–dielectric system was also obtained by the image method. However, the experimental
data concerning the use of this system for measuring the material velocity and conductance were not given
in [3].

The goal of the present study is to obtain (with the use of an approach different from that used in [3])
calculated dependences for the e.m.f. of induction that take into account the finiteness of the conductance of
metal plates of different thickness. As is noted in [4], similar problems cannot be solved without cumbersome
numerical computations. This circumstance makes it necessary to use approximate approaches allowing for
the basic specific features of the interaction between the moving conductors with electromagnetic fields, which
is convenient for the solution of applied problems.

1. Formulation of the Problem. A turn of radius R1 with a negligibly small wire cross section
is connected to a stabilized constant-current source and located in condensed dielectric medium 1 at height
h0 over a conducting plate of thickness d0 (medium 2) with conductance σ0; a stationary magnetic field is
established in the entire pace (Fig. 1). The magnetic permeability of the media is µµ0 (µ = 1; µ0 is the
magnetic permeability of vacuum).

A plane shock wave whose front is parallel to the interface of the media propagates upward over
medium 3 with velocity D. In practice, the interaction between the moving shock-compressed dielectric and
the magnetic field does not occur [2, 5] if the magnetic Reynolds number is Rem = µ0σuR1 � 1; for the
material velocity u = 5× 103 m/sec, this is equivalent to the condition σ � 104 (Ω ·m)−1. For the majority
of condensed dielectrics, the latter condition is satisfied in a broad range of shock-compression pressures.

The problem of shock-wave propagation in an unlimited conductor in the presence of a magnetic field
was considered by Burgers [4] and Zababakhin and Nechaev [6]. It was shown that if a metal possesses an
infinite conductance, the magnetic field in front of the shock wave remains unchanged. In the case of finite
conductance, the shock wave influences a conductor before it in the adjacent layer of thickness l ≈ 1/(µ0σD).
The width of the electromagnetic wave is 2.5 µm in copper (D = 5 · 103 m/sec), 4 µm in aluminum, and
30 µm in lead. It is evident that, for these metals, the turn practically does not react to the motion of the
shock wave over the conductor until it reaches the interface of media 1 and 2.

It is known that the characteristic time for which the magnetic field damps or diffuses is t ≈ µ0σζ
2

(ζ is the distance on which the magnetic field changes noticeably) [5]. In this case, the change in the field
begins with the conductor surface. Upon decay of the discontinuity at the boundary of mediums 1 and 2, the
reflected wave in the conductor (for example, in copper) propagates over a thickness approximately equal to
D1t for t and over the thickness D1t > ζ for the time t > τ = 1/(µ0σD

2
1) ' 5× 10−4 µsec.

We assume that at the moment t = 0 the entire plate is compressed by δ times and acquires, in the
direction of the turn, the material velocity u, which is due to the shock wave’s reaching the interface of
media 1 and 2. In the experiments described in [2], the behavior of metals at pressures of 10–20 GPa for
δ ' 1.1–1.2 was studied by means of an inductive transducer. One can ignore the magnetic-field distortions
caused by the effects of magnetic field line “freezing-in” into a conductor with high conductance, i.e., one can
consider that the magnetic field in a compressed metal for t = +0 is determined by the initial magnetic field
of the turn with a constant current.
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To solve the posed problem, a cylindrical coordinate system connected to the conductor surface is used
(Fig. 1). In this coordinate system, the constant-current turn approaches the interface of media 1 and 2
with velocity u, thereby predetermining the variability of the magnetic field on the conductor surface and,
consequently, the occurrence of nonstationary concentric eddy currents in the surface layer. They change the
field in medium 1 and cause the appearance of the e.m.f. of induction that depends on the velocity of the
conductor, its conductance, and the plate thickness, which is quite small.

2. The Helmholtz Equation for the Vector Potential of an Electromagnetic Field. Qua-
sistationary Field. In the case of variable fields for immovable, homogeneous, and isotropic media with ε, µ,
and σ constant over the volume, the Helmholtz equation has the form

∆A− ε0ε
∂2A

∂t2
− µ0µσ

∂A

∂t
= −µ0µj(e),

where A is the vector potential of the electromagnetic field, j(e) is the density of extraneous currents, t
is the time, ε and µ are the dielectric and magnetic permeabilities of the medium, respectively, and σ is
its conductance, and ε0 and µ0 are the dielectric and magnetic permeabilities of vacuum, respectively [7].
The transducer field in the dielectric is considered quasistationary, which implies that the wave processes in
media 1 and 3 can be ignored. This simplification is justified if the condition L � ct is satisfied (L and t

are the characteristic dimension and time of the system, respectively, and c is the velocity of light). In a
conducting medium, we assume that µ = 1 and consider only the processes that are due to the presence of
conduction, i.e., as in dielectrics, the displacement currents are ignored.

Thus, we have

∆A = −µ0j(e) (2.1)

outside the conductor (σ = 0) and

∆A = µ0σ
∂A

∂t
(2.2)

for the conductor (j(e) = 0).
Solution of the Helmholtz Equation for Region 1 (Dielectric). We use the cylindrical coordinate system

(ρ, ϕ, z) whose z axis is related to the conductor, directed normally to it, and coincides with the turn axis.
The coordinate origin is placed on the conductor surface (Fig. 1). We consider that the diameter of the turn
cross section is small compared with the turn radius R1; in other words, the current flows along the line with
coordinates ρ = R1 and z = h. Using the Dirac delta-function, we write the current-density expression in the
form

j(e) = I0δ(z − h)δ(ρ−R1). (2.3)

By virtue of the axial symmetry, the vector-potential problem also has only the component ϕ and does
not depend on the angle of ϕ, i.e., A = Aϕ. Then, in cylindrical coordinates, Eq. (2.1) takes the form (see,
e.g., [7])

1
ρ

∂

∂ρ

(
ρ
∂A

∂ρ

)
+
∂2A

∂z2
− A

ρ2
= −µ0j(e). (2.4)

According to the technique from [7, 8], Eq. (2.4) can be solved by using the integral Fourier–Bessel
transform with a kernel in the form of a first-order Bessel function. The transformation formula has the form

A∗ =

∞∫
0

ρJ1(λρ)A(ρ, z) dρ, (2.5)

where λ is the transformation parameter. Applying the transformation (2.5) to both sides of Eq. (2.4), we
obtain

d2A∗

dz2
− λ2A∗ = −µ0j

∗
(e),
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where A∗ is a function of coordinate z and j∗(e) is the transformed current density. The general solution of
this equation can be presented in the form

A∗ =
µ0

2λ

[
eλz
(
B −

z∫
0

j∗(e)e
−λξ dξ

)
+ e−λz

(
C +

z∫
0

j∗(e)e
λξ dξ

)]
, (2.6)

where ξ is the integration variable along the direction of z and B and C are the z-independent quantities
which can be determined from the boundary conditions.

As z →∞, the field should be limited. This is possible under the condition

B =

∞∫
0

j∗(e)e
−λξ dξ.

Taking into account relation (2.3), we obtain

j∗(e) =

∞∫
0

ρJ1(λρ)j(e)(ρ, z) dρ = I0

∞∫
0

ρJ1(λρ)δ(ρ−R1)δ(z − h) dρ = I0R1J1(λR1)δ(z − h),

B = I0R1J1(λR1)

∞∫
0

δ(ξ − h)e−λξ dξ = I0R1J1(λR1)e−λh.

Sobolev and Shkarlet showed in [8] that the desired quantity C = Bϕ1, and with allowance for
z∫

0

j∗(e)(λ, ξ)e
−λξ dξ =

{
0, z < h,

I0R1J1(λR1)e−λh, z > h,

z∫
0

j∗(e)(λ, ξ)e
+λξ dξ =

{
0, z > h,

I0R1J1(λR1)eλh, z < h,

expression (2.6) takes the form

A∗1 = µ0(e−λ|z−h| + ϕ1e−λ(z+h))I0R1J1(λR1)/(2λ). (2.7)

It is clear that the problem of field determination in region 1 is reduced to searching for the form of
the function ϕ1.

To determine ϕ1, the known boundary conditions for the vector potential of a magnetic field and its
derivative with respect to z, which remain true for corresponding quantities obtained by various transforma-
tions, are used in [7, 8].

In region 1, for z < h we have

A∗1 = Kλ(e−λ(h−z) + ϕ1e−λ(h+z)), (2.8)

where Kλ = µ0I0R1J1(λR1)/(2λ) and h = h0 − ut. Then,

A∗1 = Kλ(e−λ(h0−z)eλut + e−λ(h0+z)Φ1(t)),
dA∗1
dz

= λKλ(e−λ(h0−z)eλut − e−λ(h0+z)Φ1(t)), (2.9)

where Φ1 = ϕ1eλut.
Applying the Laplace transform [9] to both sides of Eqs. (2.9), we obtain the equations

L[A∗1] =
Kλe−λ(h0−z)

s− λu
+Kλe−λ(h0+z)L[Φ1(t)],

(2.10)

L
[dA∗1
dz

]
=
λKλe−λ(h0−z)

s− λu
− λKλe−λ(h0+z)L[Φ1(t)].
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Solution of the Helmholtz Equation for Region 2 (Conductor). In cylindrical coordinates, Eq. (2.2) has
the form

1
ρ

∂

∂ρ

(
ρ
∂A2

∂ρ

)
+
∂2A2

∂z2
− A2

ρ2
= µ0σ

∂A2

∂t
. (2.11)

Applying the Fourier–Bessel transform to Eq. (2.11), we obtain

∂2A∗2
∂z2

− λ2A∗2 = µ0σ
∂A∗2
∂t

. (2.12)

Applying the Laplace transform to (2.12), we have

L
[d2A∗2
dz2

]
− λ2L[A∗2] =

1
a2

(sL(A∗2)−A∗20), (2.13)

where s is the Laplace-transform parameter, A∗20 is the initial magnitude of the transformed vector potential
A∗2, and a2 = 1/(µ0σ). After simple transformations of Eq. (2.13), with allowance for expressions (2.7), for
the turn field in a free space (ϕ1 = 0) we obtain

L
[d2A∗2
dz2

]
− β2L[A∗2] = −Kλ

a2
e−λ(h0−z), (2.14)

where β2 = (λ2a2 + s)/a2.
It follows from Eq. (2.14) that

L[A∗2] = Aeβz +Be−βz +
Kλe−λ(h0−z)

s
, L

[dA∗2
dz2

]
= Aβeβz −Bβe−βz +

λKλe−λ(h0−z)

s
. (2.15)

Solution of the Helmholtz Equation for Region 3 (Dielectric). In region 3 (j(e) = 0 and σ = 0), the
Helmholtz equation is reduced to the form

L
[d2A∗3
dz2

]
− λ2L[A∗3] = 0

by means of the Fourier–Bessel and Laplace transforms and has the solution L[A∗3] = Deλz + Ee−λz.
As z → −∞, the field is bounded; therefore, the coefficient E should be zero. Thus,

L[A∗3] = De−λz, L
[dA∗3
dz

]
= Dλeλz. (2.16)

3. Field of the Turn Positioned above the Conducting Half-Space and a Plate of Finite
Thickness Which Are Driven by a Shock Wave. Using relations (2.10), (2.15), and (2.16), we require
the fulfillment of the boundary conditions for the transformed vector potentials and their derivatives for z = 0
and z = −d [7, 8].

The system of equations takes the following form:

A+B −Kλe−λh0L[Φ1] = Kλe−λh0

( 1
s− λu

− 1
s

)
,

A−B +
Kλe−λh0

α
L[Φ1] =

Kλe−λh0

α

( 1
s− λu

− 1
s

)
, (3.1)

Ae−βd +Beβd +Kλe−λh0−λd/s = De−λd, Aαe−βd −Bαeβd +Kλe−λh0−λd/s = De−λd.

Here α = β/λ =
√
s+ λ2a2/(λa). Solving system (3.1), we find that

L[Φ1] =
1− α
1 + α

( 1
s− λu

− 1
s

)[
1 +

4αe−2βd

(1− α)2e−2βd − (1 + α)2

]
. (3.2)

It is easy to show that the solution is correct, because we have L[Φ1] = L[ϕ1] = 0 for d = 0, i.e., the
perturbation of the initial field of the turn is absent.

Conducting Half-Space (d→∞). It follows from (3.2) that as d→∞,
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L[Φ1] =
1− α
1 + α

( 1
s− λu

− 1
s

)
. (3.3)

Ideal-Conduction Approximation. We consider the simplest case where the electric conduction is quite
high. One can let the quantity a =

√
1/(µ0σ) tend to zero, and α to infinity [see formula (3.3)]. Then, we

have L[Φ1] = 1/s− 1/(s−λu) or Φ1 = 1− eλut (after the inverse Laplace transform [9]). Taking into account
that Φ1 = ϕ1eλut, we obtain

ϕ1 = −1 + e−λut. (3.4)

Using the functions ϕ1, one can find a formula for the e.m.f. of induction occurring in the turn (z = h

and ρ = R1) after the surface of the ideally conducting half-space (σ → ∞) is set into motion by a shock
wave.

Applying the inverse Fourier–Bessel transform, we find the true value of the field in region 1:

A1 =

∞∫
0

A∗1(λ,R1)J1(λρ)λ dλ.

With allowance for (2.8), we obtain

A1 =
µ0R1I0

2

[ ∞∫
0

J1(λR1)J1(λρ)e−λ|z−h| dλ+

∞∫
0

J1(λR1)J1(λρ)ϕ1e−λ|z+h| dλ
]
.

The e.m.f. of induction has the form

E(t) = − d

dt

∮
A1 dl = −µ0I0πR

2
1

∞∫
0

J2
1 (λR1)

(dϕ1

dt
+ 2λuϕ1

)
e−2λh dλ (3.5)

(integration is performed along the turn loop). Substituting (3.4) into (3.5) and taking into account that
∞∫

0

J2
1 (λR1)e−mλλ dλ =

m

πR3
1

k

4

[2− k2

1− k2
E(k2)− 2K(k2)

]
[k2 = 1/[1 + (m/(2R1))2 ] and E(k2) and K(k2) are the full elliptic integrals of the first and second kinds],
one can be convinced that expression (3.5) coincides with the expression for the e.m.f. of induction obtained
in [2] by the image method.

Half-Space with Finite Conductance. Now we let the quantities proportional to a2 = 1/(µ0σ) tend to
zero and leave the quantities proportional to a = 1/

√
µ0σ. We obtain

L[Φ1] =
1
s
− 1
s− λu

+
2aλ

(s− λu)(aλ+
√
s)
− 2aλ
s(aλ+

√
s)
. (3.6)

Applying the inverse Laplace transform and the relation ϕ1 = Φ1e−λut to (3.6), we have

ϕ1 = −1 + e−λut +
2aλ√
λu

erf
√
λut− 4aλ

√
t√

π
e−λut. (3.7)

According to (3.5), we find that for the half-space of finite conductance, the e.m.f. is

Eσ = Eσ→∞ − 4I0R
2
1u

√
πµ0t

σ

∞∫
0

J2
1 (λR1)λ2e−2λh

{√
π

erf
√
λut√
λut

− e−λut
}
dλ. (3.8)

By analogy with the case of ideal conduction, the dependence (3.8) can be represented as Eσ = I0ασu.
To estimate quantitatively the dependence ασ(t), with the material velocity known, one can use the initial
value of the conductance of the metal. More exact data can be obtained by measuring the conductance of the
metal under close loading conditions by known methods [10, 11], in particular, by the method of thin plates.
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Fig. 2 Fig. 3

Fig. 2. Calculated dependences ασ(ξ) for the ideally conducting half-space (curve 1) and the half-space from
copper (curve 2) and the experimental dependences for lead plates (curves 3 and 4).

Fig. 3. Calculated dependences E(t) for plates of different thickness d0 with finite conductance σ as σ →∞
(1) and d0 →∞ (2) and for 0.20 (3), 0.10 (4), 0.05 (5), 0.03 (6), 0.01 mm (7).

Comparison with Experiment. In [2], for a comparative analysis, lead, whose initial specific conductivity
is a factor of 10 smaller than that of copper was used. Two series of experiments were performed. In
the first series, a plane shock wave with a rectangular structure was first introduced from the aluminum
screen (thickness 10 mm) of an explosive device (diameter 120 mm) into a lead sample and then into a
polymethylmethacrylate sample. The thicknesses of the samples were 5 and 6 mm, respectively, and their
diameter was 100 mm. The signal was recorded by a transducer, i.e., by an induction coil consisting of 8 coils
of isolated copper wire of diameter 1 mm and average radius RN ' 16 mm; the thickness and width of the
shells were 2.5 and 5 mm, respectively. In this case, the e.m.f. is increased by a factor of N2 [2].

The second series of experiments differed from the first series in that a copper plate of diameter 100 mm
and thickness 0.3 mm was placed on the lead–dielectric interface; this plate quickly acquired the velocity of
this interface, which made it possible to determine the material velocity of the lead–polymethylmethacrylate
interface [2]. Two types of explosive devices, I and II, with known shock-wave parameters behind its front in
the aluminum screen were used in experiments, which ensured initial pressures of 41 and 79 GPa, respectively,
in the lead sample and 10 and 20 GPa, respectively, in the polymethylmethacrylate sample.

In Fig. 2, the calculated dependence ασ(ξ) for the ideal conductor (curve 1) and the calculation results
obtained by formula (3.8) for copper (curve 2) are compared with the experimental data for lead (curves 3
and 4 for explosive devices II and I, respectively). For the displacement ξ = 2 mm, the value of ασ for the
ideal conductor is 1% greater than that of ασ for copper. The dynamic values of the conductance, which are
4.3 · 106 and 4.1 · 106 (Ω ·m)−1 for curves 3 and 4, were estimated by means of relations (3.8) for experiments
with lead. The degree of correspondence of the calculated values of the conductance to the experimental
curves is shown by filled circles in Fig. 2.

Plate of Finite Thickness. We pass to an approximate analysis of the part of the solution (3.2) that
depends on the thickness of the metal plate:

L[∆Φ1] =
1− α
1 + α

( 1
s− λu

− 1
s

) 4αe−2βd

(1− α)2e−2βd − (1 + α)2
. (3.9)

We assume that (1−α)/(1 +α) ' −1. On the right side of expression (3.9) containing the terms with
the conducting-plate thickness d, we let only the quantities proportional to a2 = 1/(µ0σ) tend to zero and
keep the quantities containing a = 1/

√
µ0σ. Here relation (3.9) takes the form
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Fig. 4. Smoothed experimental dependences E/E0(ξ) for aluminum and copper plates of different thick-
ness d0 [mm]: curve 1 refers to σ → ∞, and curves 2–10 to d0 = 0.20 (Cu), 0.30 (Al), 0.10 (Cu), 0.10
(Al), 0.05 (Al), 0.03 (Cu), 0.03 (Al), 0.015 (Cu), and 0.01 (Al), respectively.

L[∆ϕd] =
−4aλ exp (−2d

√
s/a)/(s− λu) + 4aλ exp (−2d

√
s/a)/s√

s (exp (−2d
√
s/a)− 1)− 2aλ(exp (−2d

√
s/a) + 1)

. (3.10)

The inverse Laplace transform for L[∆ϕd] (3.10) leads to a convolution-type integral Volterra equation
of the first kind [9]:

t∫
0

∆ϕd(τ) exp (λuτ)
{exp (−d2/[a2(t− τ)])− 1√

π(t− τ)
− 2aλ

[
1 + erfc

( d

a
√
t− τ

)]}
dτ

= 4aλ

t∫
0

erfc
d

a
√
τ
dτ − 2aλ

t∫
0

exp (λuτ)
{

exp
(
− 2d

a

√
λu
)

erfc
( d

a
√
τ
−
√
λuτ

)

+ exp
(2d
a

√
λu
)

erfc
( d

a
√
t

+
√
λuτ

)}
dτ. (3.11)

The functions ∆ϕd(t) determined for plates of different thickness whose conductance is close to that
of lead were calculated numerically by Ya. K. Khisamdinov and A. A. Trusnikov. In the calculations, the
integrals on the left and right sides of the integral equation (3.11) are replaced by the sums, which makes it
possible to pass to a system of algebraic equations [12]. Figure 3 shows an example of the dependences E(t)
that correspond to ϕ1 relative to (3.7) with the additional terms ∆ϕd determined from (3.11). The initial
parameters are as follows: σ = 5.865 ·106 (Ω ·m)−1, u = 2.7 ·103 m/sec, I0 = 500 A, N = 8, RN = 16 ·10−3 m,
h0 = 8.25 · 10−3 m, and δ = 1.2.

Experiments with Copper and Aluminum Plates of Finite Thickness. If the thickness of the plate
reaches values smaller than the thickness of the surface current layer in the metal, the effect of magnetic-field
diffusion through it begins to be manifested, which leads to a decrease in the recorded signal. The influence
of this effect on the signal was studied in a number of experiments with the use of copper and aluminum as
an example [2]. The thickness of the plate (foil) whose diameter is not smaller than 100 mm changed from
0.01 to 0.3 mm. The dielectric medium in which the foil (polymethylmethacrylate) was placed was subjected
to loading by a plane shock wave with a rectangular profile. It was found that, for a pressure of P ' 20 GPa
in the dielectric, the signal practically does not depend on the foil thickness and it is not smaller than 0.1 mm
for copper and 0.2 mm for aluminum. For a pressure of P ' 60 GPa in the dielectric, the critical thickness
of the copper and aluminum foils is 0.2 and 0.3 mm, respectively.

Figure 4 shows the experimental dependence E/E0 on the displacement ξ = ut for copper and aluminum
foils of different thickness d0. In the experiments, polymethylmethacrylate was used as a dielectric, and the
loading parameters were as follows: u = 2.45 · 10−3 m/sec and P = 18.5 GPa. The induction coil in which
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Fig. 5. Calculated dependences E/E0(σ) for t = 0.6 (a) and 0.8 µsec (b) for aluminum and copper plates
of different thickness d0 [mm]: curves 1–5 refer to d0 = 0.05 (Al), 0.03 (Cu), 0.03 (Al), 0 . 015 (Cu), and
0.01 (Al), respectively.

the number of turns was N = 8 and whose average radius was RN = 15.85 ·10−3 m was used as a transducer.
The distance from the conducting surface to the average cross section of the coil was h0 = 8.16 · 10−3 m and
the current was I0 = 500 A. It follows from a comparative analysis of Figs. 3 and 4 that the calculated and
experimental dependences E/E0 on the value of ξ are qualitatively similar.

We also attempted to determine the dynamic values of the conductance of copper and aluminum for
the loading conditions indicated above. With the use of the values of ϕ1 calculated from formulas (3.7) and
∆ϕd from (3.11) for t = 0.6 and 0.8 µsec, the calculated dependences E/E0 on the conductance σ (Fig. 5a
and b, respectively) were obtained for experiments with foils of different thickness d0. In comparison with the
initial value, the dynamic values of the conductance decreased by approximately a factor of 1.9 for d0 = 0.015
and 0.03 mm for copper and a factor of 2.1 for d0 = 0.03 and 0.05 mm and a factor of 6 for d0 = 0.01 mm
for aluminum.

Conclusions. The calculated dependences given in the work for determination of the velocity of metal
plates of sufficiently large thickness (in the electromagnetic sense) with allowance for the finiteness of their
conductance contributes to the development of the induction method of measuring the material velocities of
condensed substances [2].

The possibility of contact-free conductance measurements of metals in shock-wave processes has been
shown. At the given stage of studies, it is difficult to give a correct interpretation of the calculated and
experimental results with the use of the estimates of the dynamic values of the conductance. This will become
possible after the electromagnetic model is improved, the error of conductance measurement is estimated,
and the range of applicability of the calculated dependences is found.
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